Analysis of Homotopy Decomposition Varieties in Quotient Topological Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Projective Spaces for Varieties with at Most Quotient Singularities

We generalize the well-known numerical criterion for projective spaces by Cho, Miyaoka and Shepherd-Barron to varieties with at worst quotient singularities. Let X be a normal projective variety of dimension n ≥ 3 with at most quotient singularities. Our result asserts that if C · (−KX) ≥ n + 1 for every curve C ⊂ X, then X ∼= P .

متن کامل

Topological decomposition of composite quantum state spaces

We present a two-part program for state space decomposition. States are classified into entanglement classes based on local unitary transformations, and then characterized as elements of topological spaces using the language of fibre bundles. c © 2008 Optical Society of America OCIS codes: (000.3860) Mathematical methods in physics; (270.0270) Quantum optics Much effort has been spent in attemp...

متن کامل

Best Coapproximation in Quotient Spaces

As a counterpart to best approximation, a new kind of approximation, called best coapproximation was introduced in normed linear spaces by C. Franchetti and M. Furi. In this paper, we use this coapproximation to prove some results on the existence and uniqueness of best coapproximation in quotient spaces when the underlying spaces are metric linear spaces. We shall also see how coproximinality ...

متن کامل

Edge-decomposition of topological indices

The topological indices, defined as the sum of contributions of all pairs of vertices (among which are the Wiener, Harary, hyper–Wiener indices, degree distance, and many others), are expressed in terms of contributions of edges and pairs of edges.

متن کامل

Quantitative Homotopy Theory in Topological Data Analysis

This paper lays the foundations of an approach to applying Gromov’s ideas on quantitative topology to topological data analysis. We introduce the “contiguity complex”, a simplicial complex of maps between simplicial complexes defined in terms of the combinatorial notion of contiguity. We generalize the Simplicial Approximation Theorem to show that the contiguity complex approximates the homotop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12061039